import math import random import csv import logging from collections import defaultdict from .shared import point_has_streetview, reverse_geocode from ..scoring import mean_earth_radius_km logger = logging.getLogger(__name__) URBAN_CENTERS = defaultdict(list) _found_countries = defaultdict(int) _urban_center_count = 0 with open("./data/worldcities.csv") as infile: reader = csv.reader(infile, delimiter=",", quotechar='"') next(reader) # skip header for _, name, lat, lng, _, code, *_ in reader: code = code.lower() URBAN_CENTERS[code].append((name, float(lat), float(lng))) _found_countries[code] += 1 _urban_center_count += 1 logger.info(f"Read {_urban_center_count} urban centers from {len(_found_countries)} countries.") # only keep countries with more than 10 known cities VALID_COUNTRIES = tuple(k for k,v in _found_countries.items() if v > 10) async def urban_coord(country_lock, city_retries=10, point_retries=10, max_dist_km=25): """ Returns (latitude, longitude) of usable coord (where google has data) that is near a known urban center. Points will be at most max_dist_km kilometers away. This function will use country_lock to determine the country from which to pull a known urban center, generate at most point_retries points around that urban center, and try at most city_retries urban centers in that country. If none of the generated points have street view data, this will return None. Otherwise, it will exit as soon as suitable point is found. This function calls the streetview metadata endpoint - there is no quota consumed. """ country_lock = country_lock.lower() cities = URBAN_CENTERS[country_lock] src = random.sample(cities, k=min(city_retries, len(cities))) logger.info(f"Trying {len(src)} centers in {country_lock}") for (name, city_lat, city_lng) in src: # logic adapted from https://stackoverflow.com/a/7835325 # start in a city logger.info(f"Trying at most {point_retries} points around {name}") city_lat_rad = math.radians(city_lat) sin_lat = math.sin(city_lat_rad) cos_lat = math.cos(city_lat_rad) city_lng_rad = math.radians(city_lng) for _ in range(point_retries): # turn a random direction, and go random distance dist_km = random.random() * max_dist_km angle_rad = random.random() * 2 * math.pi d_over_radius = dist_km / mean_earth_radius_km sin_dor = math.sin(d_over_radius) cos_dor = math.cos(d_over_radius) pt_lat_rad = math.asin(sin_lat * cos_dor + cos_lat * sin_dor * math.cos(angle_rad)) pt_lng_rad = city_lng_rad + math.atan2(math.sin(angle_rad) * sin_dor * cos_lat, cos_dor - sin_lat * math.sin(pt_lat_rad)) pt_lat = math.degrees(pt_lat_rad) pt_lng = math.degrees(pt_lng_rad) if await point_has_streetview(pt_lat, pt_lng): logger.info("Point found!") country_code = await reverse_geocode(pt_lat, pt_lng) return (country_code or country_lock, pt_lat, pt_lng)