123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- import math
- from pathlib import Path
- from dataclasses import dataclass, asdict
- from itertools import combinations
- import numpy as np
- from PIL import Image
- from scipy.cluster import vq
- # https://en.wikipedia.org/wiki/SRGB#Transformation
- linearize_srgb = np.vectorize(
- lambda v: (v / 12.92) if v <= 0.04045 else (((v + 0.055) / 1.055) ** 2.4)
- )
- delinearize_lrgb = np.vectorize(
- lambda v: (v * 12.92) if v <= 0.0031308 else ((v ** (1 / 2.4)) * 1.055 - 0.055)
- )
- # https://mina86.com/2019/srgb-xyz-matrix/
- RGB_TO_XYZ = np.array([
- [33786752 / 81924984, 29295110 / 81924984, 14783675 / 81924984],
- [8710647 / 40962492, 29295110 / 40962492, 2956735 / 40962492],
- [4751262 / 245774952, 29295110 / 245774952, 233582065 / 245774952],
- ])
- XYZ_TO_RGB = [
- [4277208 / 1319795, -2028932 / 1319795, -658032 / 1319795],
- [-70985202 / 73237775, 137391598 / 73237775, 3043398 / 73237775],
- [164508 / 2956735, -603196 / 2956735, 3125652 / 2956735],
- ]
- # https://bottosson.github.io/posts/oklab/
- XYZ_TO_LMS = np.array([
- [0.8189330101, 0.3618667424, -0.1288597137],
- [0.0329845436, 0.9293118715, 0.0361456387],
- [0.0482003018, 0.2643662691, 0.6338517070],
- ])
- RGB_TO_LMS = XYZ_TO_LMS @ RGB_TO_XYZ
- LMS_TO_RGB = np.linalg.inv(RGB_TO_LMS)
- LMS_TO_OKLAB = np.array([
- [0.2104542553, 0.7936177850, -0.0040720468],
- [1.9779984951, -2.4285922050, 0.4505937099],
- [0.0259040371, 0.7827717662, -0.8086757660],
- ])
- OKLAB_TO_LMS = np.linalg.inv(LMS_TO_OKLAB)
- # round output to this many decimals
- OUTPUT_PRECISION = 6
- def oklab2hex(pixel: np.array) -> str:
- # no need for a vectorized version, this is only for providing the mean hex
- return "#" + "".join(f"{int(x * 255):02X}" for x in delinearize_lrgb(((pixel @ OKLAB_TO_LMS.T) ** 3) @ LMS_TO_RGB.T))
- def srgb2oklab(pixels: np.array) -> np.array:
- return (linearize_srgb(pixels / 255) @ RGB_TO_LMS.T) ** (1 / 3) @ LMS_TO_OKLAB.T
- @dataclass
- class Stats:
- # points (L, a, b)
- centroid: list[float]
- tilt: list[float]
- # scalar statistics
- size: int
- variance: float
- chroma: float
- hue: float
- # sRGB hex code of the centroid
- hex: str
- def calc_statistics(pixels: np.array) -> Stats:
- # Euclidean norm squared by summing squared components
- sqnorms = (pixels ** 2).sum(axis=1)
- # centroid, the arithmetic mean pixel of the image
- centroid = pixels.mean(axis=0)
- # tilt, the arithmetic mean pixel of normalized image
- tilt = (pixels / np.sqrt(sqnorms)[:, np.newaxis]).mean(axis=0)
- # variance = mean(||p||^2) - ||mean(p)||^2
- variance = sqnorms.mean(axis=0) - sum(centroid ** 2)
- # chroma^2 = a^2 + b^2
- chroma = np.hypot(pixels[:, 1], pixels[:, 2])
- # hue = atan2(b, a), but we need a circular mean
- # https://en.wikipedia.org/wiki/Circular_mean#Definition
- # cos(atan2(b, a)) = a / sqrt(a^2 + b^2) = a / chroma
- # sin(atan2(b, a)) = b / sqrt(a^2 + b^2) = b / chroma
- # and bc atan2(y/c, x/c) = atan2(y, x), this is a sum not a mean
- hue = math.atan2(*(pixels[:, [2, 1]] / chroma[:, np.newaxis]).sum(axis=0))
- return Stats(
- centroid=list(np.round(centroid, OUTPUT_PRECISION)),
- tilt=list(np.round(tilt, OUTPUT_PRECISION)),
- size=len(pixels),
- variance=round(variance, OUTPUT_PRECISION),
- chroma=round(chroma.mean(axis=0), OUTPUT_PRECISION),
- hue=round(hue % (2 * math.pi), OUTPUT_PRECISION),
- hex=oklab2hex(centroid),
- )
- def calc_clusters(pixels: np.array, cluster_attempts=5, seed=0) -> list[Stats]:
- means, labels = max(
- (
- # Try k = 2, 3, and 4, and try a few times for each
- vq.kmeans2(pixels.astype(float), k, minit="++", seed=seed + i)
- for k in (2, 3, 4)
- for i in range(cluster_attempts)
- ),
- key=lambda c:
- # Evaluate clustering by seeing the average distance in the ab-plane
- # between the centers. Maximizing this means the clusters are highly
- # distinct, which gives a sense of which k was best.
- # A different clustering algorithm may be more suited here, but this
- # is comparatively cheap while still producing reasonable results.
- (np.array([m1 - m2 for m1, m2 in combinations(c[0][:, 1:], 2)]) ** 2)
- .sum(axis=1)
- .mean(axis=0)
- )
- return [calc_statistics(pixels[labels == i]) for i in range(len(means))]
- def get_srgb_pixels(img: Image.Image) -> np.array:
- rgb = []
- for fr in range(getattr(img, "n_frames", 1)):
- img.seek(fr)
- rgb += [
- [r, g, b]
- for r, g, b, a in img.convert("RGBA").getdata()
- if a > 0 and (r, g, b) != (0, 0, 0)
- ]
- return np.array(rgb)
- if __name__ == "__main__":
- from sys import argv
- dex_file = argv[1] if len(argv) > 1 else "data/pokedex.json"
- image_dir = argv[2] if len(argv) > 2 else "images"
- seed = int(argv[3]) if len(argv) > 3 else 230308
- import os
- from collections import defaultdict
- to_process = defaultdict(list)
- for image_filename in os.listdir(image_dir):
- form_name = image_filename.rsplit("-", maxsplit=1)[0]
- to_process[form_name].append(Path(image_dir, image_filename))
- # TODO multiproc
- database = []
- for form, image_files in to_process.items():
- all_pixels = np.concatenate([
- get_srgb_pixels(Image.open(fn)) for fn in image_files
- ])
- oklab = srgb2oklab(all_pixels)
- database.append({
- "name": form,
- # TODO also get dex info - species, color, etc.
- "total": asdict(calc_statistics(oklab)),
- "clusters": [asdict(c) for c in calc_clusters(oklab, seed=seed)],
- })
- # TODO real output
- import json
- print(json.dumps(database, indent=2))
|