123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- #!/usr/bin/env python3
- from collections import namedtuple
- from PIL import Image
- def rescale_and_linearize(component: int) -> float:
- # takes an sRGB color component [0,255]
- # first rescales to [0,1]
- # then linearizes according to some CIEXYZ stuff I don't understand
- # then rescales to [0, 100]
- component /= 255
- linearized = component / 12.92 if component <= 0.04045 else ((component + 0.055) / 1.055) ** 2.4
- return 100 * linearized
- # conversion values I also do not understand
- # pulled from https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
- # instead of easy rgb, since it seemed to give more accurate values
- rgb_to_xyz_matrix = [
- [0.4124564, 0.3575761, 0.1804375],
- [0.2126729, 0.7151522, 0.0721750],
- [0.0193339, 0.1191920, 0.9503041],
- ]
- # reference values I also also do not understand
- # pulled from easy rgb
- # note X and Y here have nothing to do with the X and Y metrics below
- ref_x = 95.047
- ref_y = 100.000
- ref_z = 108.883
- ref_denom = ref_x + 15 * ref_y + 3 * ref_z
- ref_u = 4 * ref_x / ref_denom
- ref_v = 9 * ref_y / ref_denom
- def rgb_to_cieluv(r: int, g: int, b: int) -> tuple[float, float, float]:
- # accepts RGB (components [0, 255])
- # converts to CIE LUV (components [0, 1])
- # math taken from http://www.easyrgb.com/en/math.php
-
- # RGB (components [0, 255]) -> XYZ (components [0, 100])
- # X, Y and Z output refer to a D65/2° standard illuminant.
- sr, sg, sb = (rescale_and_linearize(c) for c in (r, g, b))
- x, y, z = (cr * sr + cg * sg + cb * sb for cr, cg, cb in rgb_to_xyz_matrix)
- # XYZ (components [0, 100]) -> LUV (components [0, 100])
- uv_denom = x + 15 * y + 3 * z
- u = 4 * x / uv_denom
- v = 9 * y / uv_denom
- if y > 0.8856:
- yprime = (y / 100) ** (1/3)
- else:
- yprime = (y / 100) * 7.787 + (16/116)
- lstar = 116 * yprime - 16
- lstar_factor = 13 * lstar
- return lstar, lstar_factor * (u - ref_u), lstar_factor * (v - ref_v)
- def is_outline(r: int, g: int, b: int, a: int) -> bool:
- # returns true if a pixel is transparent or pure black
- return a == 0 or (r, g, b) == (0, 0, 0)
- def x_metric(pixels: list[tuple[float, float, float]]) -> float:
- # X metric - the mean squared Euclidean norm
- # computed as the sum of the squares of the components of the pixels,
- # normalized by the number of pixels
- return sum(comp * comp for pix in pixels for comp in pix) / len(pixels)
- def y_metric(pixels: list[tuple[float, float, float]]) -> tuple[float, float, float]:
- # Y metric - the mean pixel of the image
- return tuple(sum(p[i] for p in pixels) / len(pixels) for i in range(3))
- ImageInfo = namedtuple("ImageInfo", ["name", "xrgb", "xluv", "yr", "yg", "yb", "yl", "yu", "yv"])
- def ingest_png(file_name: str) -> ImageInfo:
- print(f"Ingesting {file_name}")
- # image name - strip leading path and trailing extension
- name = file_name.rsplit("/", maxsplit=1)[1].split(".", maxsplit=1)[0]
- # read non-outline pixels of image
- rgb_pixels = [(r, g, b)
- for r, g, b, a in Image.open(file_name).convert("RGBA").getdata()
- if not is_outline(r, g, b, a)]
-
- # convert RGB pixels to CIELUV values
- luv_pixels = [rgb_to_cieluv(*p) for p in rgb_pixels]
- # compute and return metrics
- xrgb = x_metric(rgb_pixels)
- xluv = x_metric(luv_pixels)
- yr, yg, yb = y_metric(rgb_pixels)
- yl, yu, yv = y_metric(luv_pixels)
- return ImageInfo(
- name=name,
- xrgb=xrgb,
- xluv=xluv,
- yr=yr,
- yg=yg,
- yb=yb,
- yl=yl,
- yu=yu,
- yv=yv,
- )
- if __name__ == "__main__":
- import csv
- import os
- data = [ingest_png("pngs/" + fn) for f in os.listdir("pngs") if (fn := os.fsdecode(f)).endswith(".png")]
-
- with open("database.csv", "w") as outfile:
- writer = csv.writer(outfile, delimiter=",", quotechar="'")
- writer.writerows([d.name, d.xrgb, d.yr, d.yg, d.yb] for d in data)
- with open("database-luv.csv", "w") as outfile:
- writer = csv.writer(outfile, delimiter=",", quotechar="'")
- writer.writerows([d.name, d.xluv, d.yl, d.yu, d.yv] for d in data)
- with open("database.js", "w") as outfile:
- outfile.write("const database = [\n")
- for info in data:
- fields = ", ".join((
- f'name: "{info.name}"',
- f"xRGB: {info.xrgb}",
- f"xLUV: {info.xluv}",
- f"yRGB: [ {info.yr}, {info.yg}, {info.yb} ]",
- f"yLUV: [ {info.yl}, {info.yu}, {info.yv} ]",
- ))
- outfile.write(f" {{ {fields} }},\n")
- outfile.write("];\n")
|