123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- #!/usr/bin/env python3
- from collections import namedtuple
- import numpy as np
- from scipy.cluster import vq
- from PIL import Image
- from colorspacious import cspace_convert
- verbose = False
- seed = 20220211
- def is_outline(r: int, g: int, b: int, a: int) -> bool:
- # returns true if a pixel is transparent or pure black
- return a == 0 or (r, g, b) == (0, 0, 0)
- def inertia(pixels: np.array) -> float:
- # Inertia - the mean squared Euclidean norm
- # computed as the sum of the squares of the components of the pixels,
- # normalized by the number of pixels
- if verbose:
- print(" Computing inertia...")
- return sum(sum(pixels ** 2)) / len(pixels)
- def mu(pixels: np.array) -> np.array:
- # Mu - the mean pixel of the image
- if verbose:
- print(" Computing mu...")
- return pixels.mean(0)
- def nu(pixels: np.array) -> np.array:
- # Nu - the mean of the normalized pixels of the image
- if verbose:
- print(" Computing nu...")
- return (pixels / np.sqrt((pixels * pixels).sum(axis=1)).reshape(len(pixels), 1)).mean(0)
- def clusters(pixels: np.array) -> tuple[np.array, np.array, np.array, np.array]:
- # run k-means, and return the means and cluster contents
- # k chosen somewhat arbitrarily to be 3
- if verbose:
- print(" Computing clusters...")
- means, labels = vq.kmeans2(pixels.astype(float), 3, minit="++", seed=seed)
- c1, c2, c3 = (pixels[labels == i] for i in range(3))
- return means, c1, c2, c3
- def all_stats(pixels: np.array) -> np.array:
- kmeans, c1, c2, c3 = clusters(pixels)
- return np.array([
- # total
- inertia(pixels), *mu(pixels), *nu(pixels),
- # clusters
- len(c1), inertia(c1), *kmeans[0], *nu(c1),
- len(c2), inertia(c2), *kmeans[1], *nu(c2),
- len(c3), inertia(c3), *kmeans[2], *nu(c3),
- ])
- def ingest_png(file_name: str) -> tuple[str, list[float]]:
- print(f"Ingesting {file_name}")
- # image name - strip leading path and trailing extension
- name = file_name.rsplit("/", maxsplit=1)[1].split(".", maxsplit=1)[0]
- # read non-outline pixels of image
- rgb_pixels = np.array([
- (r, g, b)
- for r, g, b, a in Image.open(file_name).convert("RGBA").getdata()
- if not is_outline(r, g, b, a)
- ])
- # convert RGB pixels to CAM02 values
- jab_pixels = cspace_convert(rgb_pixels, "sRGB255", "CAM02-UCS")
- # compute metrics, flatten to a single array
- return name, [len(rgb_pixels), *all_stats(jab_pixels), *all_stats(rgb_pixels)]
- if __name__ == "__main__":
- import os
- import sys
- dir = "pngs" if len(sys.argv) < 2 else sys.argv[1]
- with open("database-v2.js", "w") as outfile:
- outfile.write("const databaseV2 = [\n")
- for f in os.listdir(dir):
- if (fn := os.fsdecode(f)).endswith(".png"):
- name, ra = ingest_png(dir + "/" + fn)
- outfile.write(f' [ "{name}", {", ".join(str(n) for n in ra)} ],\n')
- outfile.write("];\n")
|