瀏覽代碼

Initial skeleton of new ingester

Kirk Trombley 2 年之前
父節點
當前提交
fd183f5090
共有 1 個文件被更改,包括 241 次插入0 次删除
  1. 241 0
      ingest2.py

+ 241 - 0
ingest2.py

@@ -0,0 +1,241 @@
+import math
+import asyncio
+import multiprocessing
+import json
+from collections import defaultdict
+from io import BytesIO
+from typing import NamedTuple, Generator
+from itertools import combinations
+
+import numpy as np
+from PIL import Image
+from aiohttp import ClientSession
+from scipy.cluster import vq
+
+"""
+Goals:
+ + Single module
+ + Use OKLab
+ + Improved clustering logic
+ + Parallel, in the same way as anim-ingest
+ + Async requests for downloads
+ * Include more info about the pokemon (form, display name, icon sprite source)
+ * Include more images (get more stills from pokemondb + serebii)
+ * Include shinies + megas, tagged so the UI can filter them
+ * Fallback automatically (try showdown animated, then showdown gen5, then pdb)
+ * Filtering system more explicit and easier to work around
+ * Output a record of ingest for auditing
+ * Automatic retry of a partially failed ingest, using record
+"""
+
+# https://en.wikipedia.org/wiki/SRGB#Transformation
+linearize_srgb = np.vectorize(
+  lambda v: (v / 12.92) if v <= 0.04045 else (((v + 0.055) / 1.055) ** 2.4)
+)
+delinearize_lrgb = np.vectorize(
+  lambda v: (v * 12.92) if v <= 0.0031308 else ((v ** (1 / 2.4)) * 1.055 - 0.055)
+)
+# https://mina86.com/2019/srgb-xyz-matrix/
+RGB_TO_XYZ = np.array([
+  [33786752 / 81924984, 29295110 / 81924984, 14783675 / 81924984],
+  [8710647 / 40962492, 29295110 / 40962492, 2956735 / 40962492],
+  [4751262 / 245774952, 29295110 / 245774952, 233582065 / 245774952],
+])
+XYZ_TO_RGB = [
+  [4277208 / 1319795, -2028932 / 1319795, -658032 / 1319795],
+  [-70985202 / 73237775, 137391598 / 73237775, 3043398 / 73237775],
+  [164508 / 2956735, -603196 / 2956735, 3125652 / 2956735],
+]
+
+# https://bottosson.github.io/posts/oklab/
+XYZ_TO_LMS = np.array([
+  [0.8189330101, 0.3618667424, -0.1288597137],
+  [0.0329845436, 0.9293118715, 0.0361456387],
+  [0.0482003018, 0.2643662691, 0.6338517070],
+])
+RGB_TO_LMS = XYZ_TO_LMS @ RGB_TO_XYZ
+LMS_TO_RGB = np.linalg.inv(RGB_TO_LMS)
+LMS_TO_OKLAB = np.array([
+  [0.2104542553, 0.7936177850, -0.0040720468],
+  [1.9779984951, -2.4285922050, 0.4505937099],
+  [0.0259040371, 0.7827717662, -0.8086757660],
+])
+OKLAB_TO_LMS = np.linalg.inv(LMS_TO_OKLAB)
+
+
+def oklab2hex(pixel: np.array) -> str:
+  # no need for a vectorized version, this is only for providing the mean hex
+  return "#" + "".join(f"{int(x * 255):02X}" for x in delinearize_lrgb(((pixel @ OKLAB_TO_LMS.T) ** 3) @ LMS_TO_RGB.T))
+
+
+def srgb2oklab(pixels: np.array) -> np.array:
+  return (linearize_srgb(pixels / 255) @ RGB_TO_LMS.T) ** (1 / 3) @ LMS_TO_OKLAB.T
+
+
+Stats = NamedTuple("Stats", [
+  ("size", int),
+  ("variance", float),
+  ("stddev", float),
+  ("hex", str),
+  ("Lbar", float),
+  ("abar", float),
+  ("bbar", float),
+  ("Cbar", float),
+  ("hbar", float),
+  ("Lhat", float),
+  ("ahat", float),
+  ("bhat", float),
+])
+
+
+def calc_statistics(pixels: np.array) -> Stats:
+  # mean pixel of the image, (L-bar, a-bar, b-bar)
+  mean = pixels.mean(axis=0)
+  # square each component
+  squared = pixels ** 2
+  # Euclidean norm squared by summing squared components
+  sqnorms = squared.sum(axis=1)
+  # mean pixel of normalized image, (L-hat, a-hat, b-hat)
+  tilt = (pixels / np.sqrt(sqnorms)[:, np.newaxis]).mean(axis=0)
+  # variance = mean(||p||^2) - ||mean(p)||^2
+  variance = sqnorms.mean(axis=0) - sum(mean ** 2)
+  # chroma^2 = a^2 + b^2, C-bar = mean(sqrt(a^2 + b^2))
+  chroma = np.sqrt(squared[:, 1:].sum(axis=1)).mean(axis=0)
+  # hue = atan2(b, a), h-bar = mean(atan2(b, a))
+  hue = np.arctan2(pixels[:, 2], pixels[:, 1]).mean(axis=0) * 180 / math.pi
+  return Stats(
+    size=len(pixels),
+    variance=variance,
+    stddev=math.sqrt(variance),
+    hex=oklab2hex(mean),
+    Lbar=mean[0],
+    abar=mean[1],
+    bbar=mean[2],
+    Cbar=chroma,
+    hbar=hue,
+    Lhat=tilt[0],
+    ahat=tilt[1],
+    bhat=tilt[2],
+  )
+
+
+def find_clusters(pixels: np.array, cluster_attempts=5, seed=0) -> list[Stats]:
+  means, labels = max(
+    (
+      # Try k = 2, 3, and 4, and try a few times for each
+      vq.kmeans2(pixels.astype(float), k, minit="++", seed=seed + i)
+      for k in (2, 3, 4)
+      for i in range(cluster_attempts)
+    ),
+    key=lambda c:
+      # Evaluate clustering by seeing the average distance in the ab-plane
+      # between the centers. Maximizing this means the clusters are highly
+      # distinct, which gives a sense of which k was best.
+      (np.array([m1 - m2 for m1, m2 in combinations(c[0][:, 1:], 2)]) ** 2)
+        .sum(axis=1)
+        .mean(axis=0)
+  )
+  return [calc_statistics(pixels[labels == i]) for i in range(len(means))]
+
+
+Data = NamedTuple("Data", [
+  ("name", str),
+  ("sprite", str),
+  ("traits", list[str]),
+  ("total", Stats),
+  ("clusters", list[Stats]),
+])
+
+
+def get_pixels(img: Image) -> np.array:
+  rgb = []
+  for fr in range(getattr(img, "n_frames", 1)):
+    img.seek(fr)
+    rgb += [
+      [r, g, b]
+      for r, g, b, a in img.convert("RGBA").getdata()
+      if a > 0 and (r, g, b) != (0, 0, 0)
+    ]
+  return srgb2oklab(np.array(rgb))
+
+
+async def load_image(session: ClientSession, url: str) -> Image.Image:
+  async with session.get(url) as res:
+    return Image.open(BytesIO(await res.read()))
+
+
+async def load_all_images(urls: list[str]) -> list[Image.Image]:
+  async with ClientSession() as session:
+    # TODO error handling
+    return await asyncio.gather(*(load_image(session, url) for url in urls))
+
+
+def get_data(name, seed=0) -> Data:
+  images = asyncio.get_event_loop().run_until_complete(load_all_images([
+    # TODO source images
+  ]))
+
+  # TODO error handling
+
+  pixels = np.concatenate([get_pixels(img) for img in images])
+
+  return Data(
+    # TODO name normalization
+    name=name,
+    # TODO sprite URL discovery
+    sprite=f"https://img.pokemondb.net/sprites/sword-shield/icon/{name}.png",
+    # TODO trait analysis
+    traits=[],
+    total=calc_statistics(pixels),
+    clusters=find_clusters(pixels, seed=seed),
+  )
+
+
+def get_data_for_all(pokemon: list[str], seed=0) -> Generator[Data, None, None]:
+  with multiprocessing.Pool(4) as pool:
+    yield from pool.imap_unordered(lambda n: get_data(n, seed=seed), enumerate(pokemon), 100)
+
+
+def name2id(name: str) -> str:
+  return name.replace(" ", "").replace("-", "").lower()
+
+
+def load_pokedex(path: str) -> dict:
+  with open(path) as infile:
+    pkdx_raw = json.load(infile)
+
+  pkdx = defaultdict(list)
+
+  for key, entry in pkdx_raw.items():
+    num = entry["num"]
+    # non-cosmetic forms get separate entries automatically
+    # but keeping the separate unown forms would be ridiculous
+    if key != "unown" and len(cosmetic := entry.get("cosmeticFormes", [])) > 0:
+      cosmetic.append(f'{key}-{entry["baseForme"].replace(" ", "-")}')
+      if key == "alcremie":
+        # oh god this thing
+        cosmetic = [
+          f"{cf}-{sweet}"
+          for cf in cosmetic
+          for sweet in [
+            "Strawberry", "Berry", "Love", "Star",
+            "Clover", "Flower", "Ribbon",
+          ]
+        ]
+      pkdx[num].extend((name2id(cf), {
+        **entry,
+        "forme": cf,
+      }) for cf in cosmetic)
+    else:
+      pkdx[num].append((key, entry))
+
+  for i in range(min(pkdx.keys()), max(pkdx.keys()) + 1):
+    # double check there's no skipped entries
+    assert len(pkdx[i]) > 0
+
+  return pkdx
+
+
+if __name__ == "__main__":
+  from sys import argv
+  load_pokedex(argv[1] if len(argv) > 1 else "data/pokedex.json")