|
@@ -193,28 +193,22 @@ const mathArgBest = (mxn, arg) => `\\underset{${arg}}{\\arg\\${mxn}}`;
|
|
|
const mathDefinitions = {
|
|
|
"main-definition": String.raw`
|
|
|
\begin{aligned}
|
|
|
+ \text{RMS}_{P}\left(q\right) &= \sqrt{E\left[\left|\left|\vec{q} - \vec{p}\right|\right|^2\right]} = \sqrt{\frac{1}{|P|}\sum_{p \in P}{\left|\left|\vec{p} - \vec{q}\right|\right|^2}} \\
|
|
|
\vec{\mu}\left(P\right) &= \frac{1}{\left|P\right|}\sum_{p\in P}{\vec{p}} \\
|
|
|
I\left(P\right) &= \frac{1}{\left|P\right|}\sum_{p\in P}{\left|\left|\vec{p}\right|\right|^2} \\
|
|
|
\vec{x}_{\perp} &= \text{oproj}_{\left\{\vec{J}, \vec{L}\right\}}{\vec{x}} \\
|
|
|
\Delta{\theta}\left(P\right) &= \angle \left(\vec{q}_{\perp}, \vec{\mu}\left(P\right)_{\perp} \right)
|
|
|
\end{aligned}
|
|
|
`,
|
|
|
- "k-definition": String.raw`
|
|
|
- \begin{aligned}
|
|
|
- M\left(P\right) &= ${mathArgBest("max", "P_i")} \frac{\left|P_i\right|}{\left|P\right|} \\
|
|
|
- m\left(P\right) &= ${mathArgBest("min", "P_i")} \frac{\left|P_i\right|}{\left|P\right|} \\
|
|
|
- \alpha\left(P\right) &= ${mathArgBest("min", "P_i")} \frac{\left|P\right|}{\left|P_i\right|} \left|\left| \vec{q} - \vec{\mu}\left(P_i\right) \right|\right| \\
|
|
|
- \omega\left(P\right) &= ${mathArgBest("max", "P_i")} \frac{\left|P\right|}{\left|P_i\right|} \left|\left| \vec{q} - \vec{\mu}\left(P_i\right) \right|\right|
|
|
|
- \end{aligned}
|
|
|
- `,
|
|
|
"cluster-definition": String.raw`
|
|
|
\begin{aligned}
|
|
|
- \left\{P_1, P_2, P_3\right\} = ${mathArgBest("max", String.raw`\left\{P_1, P_2, P_3\right\}`)} \sum_{i=1}^3 \sum_{p\inP_i} \left|\left| \vec{p} - \vec{\mu}\left(P_i\right) \right|\right|^2
|
|
|
+ \left\{P_1, P_2, P_3\right\} &= ${mathArgBest("max", String.raw`\left\{P_1, P_2, P_3\right\}`)} \sum_{i=1}^3 \sum_{p\inP_i} \left|\left| \vec{p} - \vec{\mu}\left(P_i\right) \right|\right|^2 \\
|
|
|
+ M\left(P\right) &= ${mathArgBest("max", "P_i")} \left( \left|P_i\right| \right) \\
|
|
|
+ m\left(P\right) &= ${mathArgBest("min", "P_i")} \left( \left|P_i\right| \right) \\
|
|
|
+ \alpha\left(P\right) &= ${mathArgBest("min", "P_i")} \left[ \frac{\left|P\right|}{\left|P_i\right|} \left|\left| \vec{q} - \vec{\mu}\left(P_i\right) \right|\right| \right] \\
|
|
|
+ \omega\left(P\right) &= ${mathArgBest("max", "P_i")} \left[ \frac{\left|P\right|}{\left|P_i\right|} \left|\left| \vec{q} - \vec{\mu}\left(P_i\right) \right|\right| \right]
|
|
|
\end{aligned}
|
|
|
`,
|
|
|
- "rms-definition": String.raw`
|
|
|
- \text{RMS}_{P}\left(q\right) = \sqrt{E\left[\left|\left|\vec{q} - \vec{p}\right|\right|^2\right]} = \sqrt{\frac{1}{|P|}\sum_{p \in P}{\left|\left|\vec{p} - \vec{q}\right|\right|^2}}
|
|
|
- `,
|
|
|
"result-definition": String.raw`
|
|
|
\left(
|
|
|
\text{RMS}_P\left(q\right),
|
|
@@ -248,7 +242,7 @@ const updateObjective = () => {
|
|
|
if (!tex) {
|
|
|
const { includeX, normQY, closeCoeff } = state;
|
|
|
if (!includeX && closeCoeff === 0) {
|
|
|
- tex = TeXZilla.toMathML(String.raw`\text{Empty Metric}`);
|
|
|
+ tex = TeXZilla.toMathML(String.raw`\text{Malamar-ness}`);
|
|
|
} else {
|
|
|
const qyMod = normQY ? renderNorm : c => c;
|
|
|
tex = TeXZilla.toMathML(String.raw`
|