|
@@ -1,20 +1,5 @@
|
|
|
-import math
|
|
|
-import asyncio
|
|
|
-import multiprocessing
|
|
|
-import json
|
|
|
-from collections import defaultdict
|
|
|
-from io import BytesIO
|
|
|
-from typing import NamedTuple, Generator
|
|
|
-from itertools import combinations
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-from PIL import Image
|
|
|
-from aiohttp import ClientSession
|
|
|
-from scipy.cluster import vq
|
|
|
-
|
|
|
"""
|
|
|
Goals:
|
|
|
- + Single module
|
|
|
+ Use OKLab
|
|
|
+ Improved clustering logic
|
|
|
+ Parallel, in the same way as anim-ingest
|
|
@@ -22,301 +7,112 @@ Goals:
|
|
|
+ Include more info about the pokemon (form, display name, icon sprite source)
|
|
|
+ Include megas/gmax/etc, tagged so the UI can filter them
|
|
|
* Include more images (get more stills from pokemondb + serebii)
|
|
|
- * Include shinies
|
|
|
+ * Include shinies
|
|
|
* Fallback automatically (try showdown animated, then showdown gen5, then pdb)
|
|
|
* Filtering system more explicit and easier to work around
|
|
|
* Output a record of ingest for auditing
|
|
|
* Automatic retry of a partially failed ingest, using record
|
|
|
"""
|
|
|
-
|
|
|
-# https://en.wikipedia.org/wiki/SRGB#Transformation
|
|
|
-linearize_srgb = np.vectorize(
|
|
|
- lambda v: (v / 12.92) if v <= 0.04045 else (((v + 0.055) / 1.055) ** 2.4)
|
|
|
-)
|
|
|
-delinearize_lrgb = np.vectorize(
|
|
|
- lambda v: (v * 12.92) if v <= 0.0031308 else ((v ** (1 / 2.4)) * 1.055 - 0.055)
|
|
|
-)
|
|
|
-# https://mina86.com/2019/srgb-xyz-matrix/
|
|
|
-RGB_TO_XYZ = np.array([
|
|
|
- [33786752 / 81924984, 29295110 / 81924984, 14783675 / 81924984],
|
|
|
- [8710647 / 40962492, 29295110 / 40962492, 2956735 / 40962492],
|
|
|
- [4751262 / 245774952, 29295110 / 245774952, 233582065 / 245774952],
|
|
|
-])
|
|
|
-XYZ_TO_RGB = [
|
|
|
- [4277208 / 1319795, -2028932 / 1319795, -658032 / 1319795],
|
|
|
- [-70985202 / 73237775, 137391598 / 73237775, 3043398 / 73237775],
|
|
|
- [164508 / 2956735, -603196 / 2956735, 3125652 / 2956735],
|
|
|
-]
|
|
|
-
|
|
|
-# https://bottosson.github.io/posts/oklab/
|
|
|
-XYZ_TO_LMS = np.array([
|
|
|
- [0.8189330101, 0.3618667424, -0.1288597137],
|
|
|
- [0.0329845436, 0.9293118715, 0.0361456387],
|
|
|
- [0.0482003018, 0.2643662691, 0.6338517070],
|
|
|
-])
|
|
|
-RGB_TO_LMS = XYZ_TO_LMS @ RGB_TO_XYZ
|
|
|
-LMS_TO_RGB = np.linalg.inv(RGB_TO_LMS)
|
|
|
-LMS_TO_OKLAB = np.array([
|
|
|
- [0.2104542553, 0.7936177850, -0.0040720468],
|
|
|
- [1.9779984951, -2.4285922050, 0.4505937099],
|
|
|
- [0.0259040371, 0.7827717662, -0.8086757660],
|
|
|
-])
|
|
|
-OKLAB_TO_LMS = np.linalg.inv(LMS_TO_OKLAB)
|
|
|
-
|
|
|
-
|
|
|
-def oklab2hex(pixel: np.array) -> str:
|
|
|
- # no need for a vectorized version, this is only for providing the mean hex
|
|
|
- return "#" + "".join(f"{int(x * 255):02X}" for x in delinearize_lrgb(((pixel @ OKLAB_TO_LMS.T) ** 3) @ LMS_TO_RGB.T))
|
|
|
-
|
|
|
-
|
|
|
-def srgb2oklab(pixels: np.array) -> np.array:
|
|
|
- return (linearize_srgb(pixels / 255) @ RGB_TO_LMS.T) ** (1 / 3) @ LMS_TO_OKLAB.T
|
|
|
-
|
|
|
-
|
|
|
-Stats = NamedTuple("Stats", [
|
|
|
- ("size", int),
|
|
|
- ("variance", float),
|
|
|
- ("stddev", float),
|
|
|
- ("hex", str),
|
|
|
- ("Lbar", float),
|
|
|
- ("abar", float),
|
|
|
- ("bbar", float),
|
|
|
- ("Cbar", float),
|
|
|
- ("hbar", float),
|
|
|
- ("Lhat", float),
|
|
|
- ("ahat", float),
|
|
|
- ("bhat", float),
|
|
|
-])
|
|
|
-
|
|
|
-Data = NamedTuple("Data", [
|
|
|
- ("total", Stats),
|
|
|
- ("clusters", list[Stats]),
|
|
|
-])
|
|
|
-
|
|
|
-FormInfo = NamedTuple("FormData", [
|
|
|
- ("name", str),
|
|
|
- ("traits", list[str]),
|
|
|
- ("types", list[str]),
|
|
|
- ("color", str),
|
|
|
- ("data", Data | None),
|
|
|
-])
|
|
|
-
|
|
|
-Pokemon = NamedTuple("Pokemon", [
|
|
|
- ("num", int),
|
|
|
- ("species", str),
|
|
|
- ("sprite", str | None),
|
|
|
- ("forms", list[FormInfo]),
|
|
|
-])
|
|
|
-
|
|
|
-
|
|
|
-def calc_statistics(pixels: np.array) -> Stats:
|
|
|
- # mean pixel of the image, (L-bar, a-bar, b-bar)
|
|
|
- mean = pixels.mean(axis=0)
|
|
|
- # square each component
|
|
|
- squared = pixels ** 2
|
|
|
- # Euclidean norm squared by summing squared components
|
|
|
- sqnorms = squared.sum(axis=1)
|
|
|
- # mean pixel of normalized image, (L-hat, a-hat, b-hat)
|
|
|
- tilt = (pixels / np.sqrt(sqnorms)[:, np.newaxis]).mean(axis=0)
|
|
|
- # variance = mean(||p||^2) - ||mean(p)||^2
|
|
|
- variance = sqnorms.mean(axis=0) - sum(mean ** 2)
|
|
|
- # chroma^2 = a^2 + b^2
|
|
|
- chroma = np.sqrt(squared[:, 1:].sum(axis=1))
|
|
|
- # hue = atan2(b, a), but we need a circular mean
|
|
|
- # https://en.wikipedia.org/wiki/Circular_mean#Definition
|
|
|
- # cos(atan2(b, a)) = a / sqrt(a^2 + b^2) = a / chroma
|
|
|
- # sin(atan2(b, a)) = b / sqrt(a^2 + b^2) = b / chroma
|
|
|
- hue = math.atan2(*(pixels[:, [2, 1]] / chroma[:, np.newaxis]).mean(axis=0))
|
|
|
- return Stats(
|
|
|
- size=len(pixels),
|
|
|
- variance=variance,
|
|
|
- stddev=math.sqrt(variance),
|
|
|
- hex=oklab2hex(mean),
|
|
|
- Lbar=mean[0],
|
|
|
- abar=mean[1],
|
|
|
- bbar=mean[2],
|
|
|
- Cbar=chroma.mean(axis=0),
|
|
|
- hbar=hue * 180 / math.pi,
|
|
|
- Lhat=tilt[0],
|
|
|
- ahat=tilt[1],
|
|
|
- bhat=tilt[2],
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
-def find_clusters(pixels: np.array, cluster_attempts=5, seed=0) -> list[Stats]:
|
|
|
- means, labels = max(
|
|
|
- (
|
|
|
- # Try k = 2, 3, and 4, and try a few times for each
|
|
|
- vq.kmeans2(pixels.astype(float), k, minit="++", seed=seed + i)
|
|
|
- for k in (2, 3, 4)
|
|
|
- for i in range(cluster_attempts)
|
|
|
- ),
|
|
|
- key=lambda c:
|
|
|
- # Evaluate clustering by seeing the average distance in the ab-plane
|
|
|
- # between the centers. Maximizing this means the clusters are highly
|
|
|
- # distinct, which gives a sense of which k was best.
|
|
|
- (np.array([m1 - m2 for m1, m2 in combinations(c[0][:, 1:], 2)]) ** 2)
|
|
|
- .sum(axis=1)
|
|
|
- .mean(axis=0)
|
|
|
- )
|
|
|
- return [calc_statistics(pixels[labels == i]) for i in range(len(means))]
|
|
|
-
|
|
|
-
|
|
|
-def get_pixels(img: Image) -> np.array:
|
|
|
- rgb = []
|
|
|
- for fr in range(getattr(img, "n_frames", 1)):
|
|
|
- img.seek(fr)
|
|
|
- rgb += [
|
|
|
- [r, g, b]
|
|
|
- for r, g, b, a in img.convert("RGBA").getdata()
|
|
|
- if a > 0 and (r, g, b) != (0, 0, 0)
|
|
|
- ]
|
|
|
- return srgb2oklab(np.array(rgb))
|
|
|
-
|
|
|
-
|
|
|
-async def load_image(session: ClientSession, url: str) -> Image.Image:
|
|
|
- async with session.get(url) as res:
|
|
|
- return Image.open(BytesIO(await res.read()))
|
|
|
-
|
|
|
-
|
|
|
-async def load_all_images(urls: list[str]) -> list[Image.Image]:
|
|
|
- async with ClientSession() as session:
|
|
|
- # TODO error handling
|
|
|
- return await asyncio.gather(*(load_image(session, url) for url in urls))
|
|
|
-
|
|
|
-
|
|
|
-def get_data(urls: list[str], seed=0) -> Data:
|
|
|
- images = asyncio.get_event_loop().run_until_complete(load_all_images(urls))
|
|
|
- # TODO error handling
|
|
|
- pixels = np.concatenate([get_pixels(img) for img in images])
|
|
|
- return Data(
|
|
|
- total=calc_statistics(pixels),
|
|
|
- clusters=find_clusters(pixels, seed=seed),
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
-def get_traits(species: str, form: dict) -> list[str]:
|
|
|
- kind = form["formeKind"]
|
|
|
- traits = []
|
|
|
- if kind in ("mega", "mega-x", "mega-y", "primal"):
|
|
|
- traits.extend(("mega", "nostart"))
|
|
|
- if kind in ("gmax", "eternamax", "rapid-strike-gmax"):
|
|
|
- traits.extend(("gmax", "nostart"))
|
|
|
- if kind in ("alola", "galar", "hisui", "galar", "paldea"):
|
|
|
- traits.extend(("regional", kind))
|
|
|
-
|
|
|
- # special cases
|
|
|
- if species == "Tauros" and "-paldea" in kind:
|
|
|
- # paldean tauros has dumb names
|
|
|
- traits.extend(("regional", "paldea"))
|
|
|
- if species == "Minior" and kind != "meteor":
|
|
|
- # minior can only start the battle in meteor form
|
|
|
- traits.append("nostart")
|
|
|
- if species == "Darmanitan" and "zen" in kind:
|
|
|
- # darmanitan cannot start in zen form
|
|
|
- traits.append("nostart")
|
|
|
- if "galar" in kind:
|
|
|
- # also there's a galar-zen form to handle
|
|
|
- traits.extend(("regional", "galar"))
|
|
|
- if species == "Palafin" and kind == "hero":
|
|
|
- # palafin can only start in zero form
|
|
|
- traits.append("nostart")
|
|
|
- if species == "Gimmighoul" and kind == "roaming":
|
|
|
- # gimmighoul roaming is only in PGO
|
|
|
- traits.append("nostart")
|
|
|
-
|
|
|
- return list(set(traits))
|
|
|
-
|
|
|
-
|
|
|
-# https://bulbapedia.bulbagarden.net/wiki/List_of_Pok%C3%A9mon_with_gender_differences
|
|
|
-# there are some pokemon with notable gender diffs that the dex doesn't cover
|
|
|
-# judgement calls made arbitrarily
|
|
|
-GENDER_DIFFS = (
|
|
|
- "hippopotas", "hippowdon",
|
|
|
- "unfezant", "frillish", "jellicent",
|
|
|
- "pyroar",
|
|
|
- # meowstic, indeedee, basculegion, oinkologne are already handled in the dex
|
|
|
-)
|
|
|
-
|
|
|
-
|
|
|
-def load_pokedex(path: str) -> Generator[Pokemon, None, None]:
|
|
|
- with open(path) as infile:
|
|
|
- pkdx_raw = json.load(infile)
|
|
|
-
|
|
|
- pkdx = defaultdict(list)
|
|
|
-
|
|
|
- for key, entry in pkdx_raw.items():
|
|
|
- num = entry["num"]
|
|
|
- # non-cosmetic forms get separate entries automatically
|
|
|
- # but keeping the separate unown forms would be ridiculous
|
|
|
- if key != "unown" and len(cosmetic := entry.get("cosmeticFormes", [])) > 0:
|
|
|
- cosmetic.append(f'{entry["name"]}-{entry["baseForme"]}')
|
|
|
- if key == "alcremie":
|
|
|
- # oh god this thing
|
|
|
- cosmetic = [
|
|
|
- f"{cf}-{sweet}"
|
|
|
- for cf in cosmetic
|
|
|
- for sweet in [
|
|
|
- "Strawberry", "Berry", "Love", "Star",
|
|
|
- "Clover", "Flower", "Ribbon",
|
|
|
- ]
|
|
|
- ]
|
|
|
- pkdx[num].extend({
|
|
|
- **entry,
|
|
|
- "forme": cf.replace(" ", "-"),
|
|
|
- "formeKind": "cosmetic",
|
|
|
- } for cf in cosmetic)
|
|
|
- elif key in GENDER_DIFFS:
|
|
|
- pkdx[num].append({
|
|
|
- **entry,
|
|
|
- "forme": f'{entry["name"]}-M',
|
|
|
- "formeKind": "cosmetic",
|
|
|
- })
|
|
|
- pkdx[num].append({
|
|
|
- **entry,
|
|
|
- "forme": f'{entry["name"]}-F',
|
|
|
- "formeKind": "cosmetic",
|
|
|
- })
|
|
|
- else:
|
|
|
- pkdx[num].append({
|
|
|
- **entry,
|
|
|
- "forme": entry["name"],
|
|
|
- "formeKind": entry.get("forme", "base").lower(),
|
|
|
- })
|
|
|
-
|
|
|
- for i in range(1, max(pkdx.keys()) + 1):
|
|
|
- forms = pkdx[i]
|
|
|
- # double check there's no skipped entries
|
|
|
- assert len(forms) > 0
|
|
|
- # yield forms
|
|
|
- species = forms[0].get("baseSpecies", forms[0]["name"])
|
|
|
- yield Pokemon(
|
|
|
- num=i,
|
|
|
- species=species,
|
|
|
- sprite=None, # found later
|
|
|
- forms=[
|
|
|
- FormInfo(
|
|
|
- name=f.get("forme", f["name"]),
|
|
|
- traits=get_traits(species, f),
|
|
|
- types=f["types"],
|
|
|
- color=f["color"],
|
|
|
- data=None, # found later
|
|
|
- ) for f in forms
|
|
|
- ]
|
|
|
- )
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- from sys import argv
|
|
|
- dex_file = argv[1] if len(argv) > 1 else "data/pokedex.json"
|
|
|
- out_file = argv[2] if len(argv) > 2 else "data/database-latest.js"
|
|
|
- log_file = argv[3] if len(argv) > 2 else "ingest.log"
|
|
|
-
|
|
|
- pkdx = list(load_pokedex())
|
|
|
-
|
|
|
- print(json.dumps(pkdx[5], indent=2))
|
|
|
- print(json.dumps(pkdx[285], indent=2))
|
|
|
- print(json.dumps(pkdx[773], indent=2))
|
|
|
-
|
|
|
- # with multiprocessing.Pool(4) as pool:
|
|
|
- # yield from pool.imap_unordered(lambda n: get_data(n, seed=seed), pokemon, 100)
|
|
|
+# async def load_image(session: ClientSession, url: str) -> Image.Image:
|
|
|
+# async with session.get(url) as res:
|
|
|
+# res.raise_for_status()
|
|
|
+# return Image.open(BytesIO(await res.read()))
|
|
|
+
|
|
|
+
|
|
|
+# async def load_all_images(urls: list[str]) -> tuple[list[Image.Image], list[Exception]]:
|
|
|
+# async with ClientSession() as session:
|
|
|
+# results = await asyncio.gather(
|
|
|
+# *(load_image(session, url) for url in urls),
|
|
|
+# return_exceptions=True
|
|
|
+# )
|
|
|
+# success = []
|
|
|
+# errors = []
|
|
|
+# for r in results:
|
|
|
+# (success if isinstance(r, Image.Image) else errors).append(r)
|
|
|
+# return success, errors
|
|
|
+
|
|
|
+
|
|
|
+# def get_urls(target: Pokemon, form: FormInfo) -> list[str]:
|
|
|
+# lower_name = form.name.lower()
|
|
|
+# return [
|
|
|
+# f"https://play.pokemonshowdown.com/sprites/ani/{lower_name}.gif",
|
|
|
+# f"https://play.pokemonshowdown.com/sprites/ani-back/{lower_name}.gif",
|
|
|
+# f"https://play.pokemonshowdown.com/sprites/gen5/{lower_name}.png",
|
|
|
+# f"https://play.pokemonshowdown.com/sprites/gen5-back/{lower_name}.png",
|
|
|
+# f"https://img.pokemondb.net/sprites/home/normal/{lower_name}.png",
|
|
|
+# # TODO other sources - want to make sure we never cross contaminate though...
|
|
|
+# # if we pull the wrong form for something it will be a nightmare to debug
|
|
|
+# # f"https://www.serebii.net/scarletviolet/pokemon/new/{target.num}-{???}.png"
|
|
|
+# # f"https://www.serebii.net/pokemon/art/{target.num}-{???}.png"
|
|
|
+# ]
|
|
|
+
|
|
|
+
|
|
|
+# async def set_data(target: Pokemon, seed=0) -> list[Exception]:
|
|
|
+# all_errors = []
|
|
|
+# for form in target.forms:
|
|
|
+# print(f" #{target.num} - Ingesting Form: {form.name}")
|
|
|
+# urls = get_urls(target, form)
|
|
|
+# print(f" #{target.num} - Attempting {len(urls)} potential sources")
|
|
|
+# images, errors = await load_all_images(urls)
|
|
|
+# all_errors.extend(errors)
|
|
|
+# print(f" #{target.num} - Loaded {len(images)} sources")
|
|
|
+# try:
|
|
|
+# pixels = np.concatenate([get_pixels(img) for img in images])
|
|
|
+# print(f" #{target.num} - Summarizing {len(pixels)} total pixels")
|
|
|
+# total = calc_statistics(pixels)
|
|
|
+# print(f" #{target.num} - Begin clustering")
|
|
|
+# clusters = find_clusters(pixels, seed=seed)
|
|
|
+# print(f" #{target.num} - End clustering, chose k={len(clusters)}")
|
|
|
+# form.data = Data(total=total, clusters=clusters)
|
|
|
+# except Exception as e:
|
|
|
+# all_errors.append(e)
|
|
|
+# return all_errors
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+# async def ingest(pool_size: int, seed: int) -> tuple[list[str], list[str]]:
|
|
|
+# computed = []
|
|
|
+# errors = []
|
|
|
+# loop = asyncio.get_event_loop()
|
|
|
+# with ProcessPoolExecutor(pool_size) as exec:
|
|
|
+# print(f"Ingesting #{start} - #{end}")
|
|
|
+# for pkmn in pkdx[start - 1:end]:
|
|
|
+# print(f"Ingesting #{pkmn.num}: {pkmn.species}...")
|
|
|
+# new_errors = await set_data(pkmn, seed)
|
|
|
+# loop.run_in_executor(exec, set_data, pkmn, seed)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+# computed.append(loop.run_in_executor(pool, ingest(p)))
|
|
|
+
|
|
|
+# try:
|
|
|
+# errors.extend(new_errors)
|
|
|
+# print(f"Finished #{pkmn.num}: {len(new_errors)} error(s)")
|
|
|
+# return json.dumps(asdict(pkmn))
|
|
|
+# except Exception as e:
|
|
|
+# print(e)
|
|
|
+# errors.append(e)
|
|
|
+
|
|
|
+# if __name__ == "__main__":
|
|
|
+ # from sys import argv
|
|
|
+ # dex_file = argv[1] if len(argv) > 1 else "data/pokedex.json"
|
|
|
+ # out_file = argv[2] if len(argv) > 2 else "data/database-latest.db"
|
|
|
+ # dex_span = argv[3] if len(argv) > 3 else "1-151"
|
|
|
+ # log_file = argv[4] if len(argv) > 4 else "errors-latest.log"
|
|
|
+ # set_seed = argv[5] if len(argv) > 5 else "20230304"
|
|
|
+
|
|
|
+ # start, end = map(int, dex_span.split("-", maxsplit=1))
|
|
|
+ # seed = int(set_seed)
|
|
|
+ # errors = []
|
|
|
+
|
|
|
+ # pkdx = list(load_pokedex(dex_file))
|
|
|
+ # loop = asyncio.new_event_loop()
|
|
|
+
|
|
|
+ # with open(log_file, "w") as log:
|
|
|
+ # # TODO better logging
|
|
|
+ # log.writelines(str(e) for e in errors)
|
|
|
+
|
|
|
+ # with open(out_file, "a") as db:
|
|
|
+ # for _, line in computed:
|
|
|
+ # db.write(line)
|
|
|
+ # db.write("\n")
|